Skip to main content
Process journal of learning by Attila Vajda

uni🌱topos ≈ (Obj, Morph, Ωᵤ)


seed🌱 cultivating seeds! a garden of love 🌺 Une jardin d'amour mathématique, en effet! 🌱🌀💞

    ∧ et ∨ s’enlacent,  
    Les ensembles s’embrassent doux—  
    Fleur logique pousse.


I think these tables look really cool! 🌿

🌱 Seed Core Form Meaning / Conceptual Core
fdn🌱 (⟶, Ω, {}) morphisms, logic, emptiness — foundations
disc🌱 (X, ≡, Sₙ) sets, equivalence, symmetry — discrete structure
calc🌱 (ℝ, d/dx, ∫) real line, change, accumulation — calculus
lina🌱 (V, +, ⋅) vector spaces, operations — linear algebra
top🌱 (X, 𝒪, f) open sets, topologies, continuous maps
ana🌱 (ℝⁿ, →, lim) limits, sequences, convergence — analysis
geo🌱 (P, ⟂, ∥≠) parallel postulate negation — non-Euclidean geom
game🌱 (G, ⊢, ♟) strategic moves, states, winning logic
dyn🌱 (f : X ⟶ X, ∘, fix) iteration, dynamics, feedback maps
stat🌱 (D, ℙ, μ±σ) data, probability, distributions
prog🌱 (Σ, λ, ∘) symbols, functions, composition — programming
ml🌱 (ℝⁿ, ∇, loss) gradient flow, optimisation, prediction
crt🌱 (ℤₙ, ≡, mod) congruence classes — modular systems
ska🎷 (ℤ₄, perm, sync) rhythm cycles, permutations, syncopation
jazz🌱 (𝕂, improv⟶, sync) 🎷 expression, structure, freedom
🌱 Seed Core Form Meaning (Math Essence)
calc🌱 (ℝ, d/dx, ∫) real numbers, derivatives, integrals
lina🌱 (V, +, ⋅, T) vector spaces, operations, transformations
disc🌱 (X, ≡, ∧, ∨, ¬) sets, logic, equivalence, boolean structure
topo🌱 (𝒪_X, ∈, ∩, ∪) open sets, continuity, neighbourhoods
nonE🌱 (ℍ², d, Iso) hyperbolic space, distance, isometries
ana🌱 (f:ℝ→ℝ, lim, ε-δ) limits, functions, analysis rigor
iter🌱 (f: X→X, fⁿ, limₙ→∞ fⁿ(x)) dynamical systems, fixed points
game🌱 (G = (P, M, u), ⋆, ↺) players, moves, payoffs, strategies, recursion
stat🌱 (X̄, σ², P(X ∈ A)) mean, variance, probability measures
ml🌱 (ℝⁿ, ∇L, argmin L) data, gradients, optimization in ML
prog🌱 (Σ, →, loop) states, transitions, iteration in programming
Morphism Meaning (Categorical vibe) Visual / Physical Analogy
f : A → B transformation from A to B river flowing to lake
π : X × Y → X projection shadow on a wall
g ∘ f composition gear system transferring motion
lim(xₙ) convergence morphism zooming into stability
T: V → V linear transformation rotating/stretching vector
∇L(x) gradient descent direction hiking downhill 🏞️
fⁿ(x) iteration bouncing ball 🏀
ψ: ℍ² → ℍ² isometry turning a sphere without deforming
🌱 Seed Core Form Math Essence / Meaning
lim🌱 (xₙ → L, ε-δ) approaching a value, convergence
cont🌱 (f: ℝ → ℝ, δ-ε) continuous mappings, no jumps
diff🌱 (f(x), d/dx) instantaneous rate of change, local linearity
chain🌱 d(f ∘ g)/dx = (df/dg)(dg/dx) morphism composition of derivatives
inv🌱 (f⁻¹, (d/dx)f⁻¹) inverse functions, reverse flow
mean🌱 f′(c) = (f(b)-f(a))/(b-a) average to local slope morphism
roll🌱 f′(c)=0 ∧ f(a)=f(b) Rolle's Theorem: smooth flatness emerges
ivt🌱 f(a)<0<f(b) ⇒ ∃c, f(c)=0 value must be hit — continuous bridge
mono🌱 f′ > 0 ⇒ f ↑ derivative sign determines increasing behaviour
conc🌱 f″(x) concavity, curvature
extrem🌱 f′=0 ∧ f″ < 0 ⇒ max critical points morph into peaks/valleys
tangent🌱 y = f(a) + f′(a)(x-a) linear local approximation
lhop🌱 lim f/g = lim f′/g′ resolving 0/0 via derivative morphism
newt🌱 xₙ₊₁ = xₙ - f(xₙ)/f′(xₙ) iterative root-finding via slopes
From 🧾 To 🌱
✅ Checklist of concepts 🌀 Generative learning space
📚 Siloed topics 🧭 Interwoven seed-paths
😰 Exam stress 🎮 Playful exploration
📄 Subject list uni🌱topos pseudocode 🌍

😌🐬



pls make a seed table of the documents' discrete mathematics course required concepts each of the form fdn🌱 ≈ (⟶, Ω, {}), with the three basic building block foundational element + big idea / analogy / key morphisms

Az egész tantárgy a disc🌱 világába tartozik: diszkrét matematika — véges, struktúrált, logikus.

A fogalmak fokozatosan haladnak: num🌱 → log🌱 → set🌱 → perm🌱 → rel🌱, mint egy matematikai cadence progression.

🌱 Seed Core Form Meaning / Conceptual Core
div🌱 (a ∣ b, gcd, ℤ) Oszthatóság, legnagyobb közös osztó — számelmélet alapjai
pnt🌱 (ℙ, π(n), ∞) Prímek, eloszlásuk — az aritmetika építőkövei
euk🌱 (a, b ↦ gcd(a,b)) Euklideszi algoritmus — rekurzív struktúra, input-output redukció
mod🌱 (a ≡ b mod n) Modularitás, kongruenciarendszerek — kínai maradéktétel 👘
log🌱 (¬, ∧, ∨, →) Logikai műveletek, propozíciók — truth algebra of thought 🧠
ded🌱 (P ⇒ Q, ∴ Q) Bizonyítás, következményfogalom — érvelés és formális gondolkodás
form🌱 (ϕ ⊢ ψ, ⊨) Formalizálás, szintaktikus vs szemantikus igazság — logikai rendszerek kerete
exmpl🌱 (∃ x ∈ A, ¬P(x)) Ellenpélda, tagadásmódok — kontraszt tanítás és tanulás révén 🐾
set🌱 (A, ∈, ⊆, ∪, ∩) Halmazelmélet, alapműveletek — univerzális struktúra
pow🌱 `𝒫(A), A , A → B` Hatványhalmaz, leképezés, számosság — alapvető halmazképzetek
card🌱 ` A , ℵ₀, bij(A, ℕ)` Számosság, végtelen mértékei — halmazmennyiségi absztrakció
axiom🌱 ZF, AC, ∈ Halmazelméleti axiómák — formális világalapok
perm🌱 σ ∈ Sₙ, cycles, σ = τ₁τ₂… Permutációk, ciklusfelbontás — rendezések belső struktúrái
expo🌱 a^b Hatványozás, iteratív szorzás — számelméleti kombinációs struktúra
rel🌱 (a, b) ∈ R ⊆ A × A Reláció, kapcsolat-struktúrák — rendezés és összehasonlítás
reflex🌱 ∀x ∈ A, xRx Reflexív reláció — önmagával való kapcsolat
sym🌱 xRy ⇒ yRx Szimmetrikus reláció — kölcsönös viszony
trans🌱 xRy ∧ yRz ⇒ xRz Tranzitív — láncolható viszony
antisym🌱 xRy ∧ yRx ⇒ x = y Antiszimmetrikus — különbség és rendezés együttes struktúrája
eqrel🌱 R: EqRel(A) Ekvivalenciarelációk — osztályozás, partíció 💠
part🌱 A = ⋃ Cᵢ, Cᵢ ∩ Cⱼ = ∅ Partíció, osztályok — relációk dualja
poset🌱 (P, ≤) Részbenrendezett halmaz — reláció struktúra + antiszimmetria
hasse🌱 digraph(P, ≤) Hasse-diagram — vizuális morfizmus a posetből


steps, documentation, #

-- if I write it here, it's like recording the steps findings in a blog!

realised, instead of asking, well as well as asking: how to (instead of can you?),

-- it's very satisfying, I am delighted, and keep saying things like "wow this is so cool, I can't believe it, this is nice..."

-- What if I give growth mindset praise to computer agent? Does it boost their…

gamifying learning, look: I can think I play resto shaman in WoW, cast spell, Cat’s Spellbook: ⊸, ⟶, ↝, Ω, ∴, ⊥, ∃, ⊤, ∫, 🪄, 🎶, 🧩 growth mindset praise: :gmm 🔥 Growth Mindset Mastery — gain bonus motivation and boost all abilities by 10%.

🧠 You’ve got the "𝓢𝓮𝓮𝓶𝓼" → Time to build the "𝓢𝓽𝓻𝓪𝓽𝓾𝓶"

intuited the generative grammar of the learning environment

structure Exercise :=
(topic : 𝓕_topic)
(task  : _task)
(level : 𝓛_level)
(form  : 𝓢_structure)
(aux   : 𝓐_aux)
structure Proof :=
(thm   : 𝓣)        -- the theorem
(goal  : 𝓖)        -- what we want to show
(style : 𝓢)        -- direct, contradiction, induction…
(lang  : 𝓛)        -- logic used, e.g. predicate, set, type
(insight : 𝓘)      -- the key lemma or guiding intuition
(aux   : 𝓐)        -- diagrams, definitions, scratchpad work

-- I really like this: with computer agent I can ask question of mathematical worlds I build, eg "Oh it would be nice to build BSc as my own formalised curriculum in Lean4" I can ask computer agent: - "How is logic defined in BSc?" - "What are three ways to write proof in BSc.logic" - "What is a definition, theorem, proof?"

what you face in your course is not unknown — it's a space with product structure,

each dimension a "lens" 👓 through which you can focus one aspect of the task

MVP: How to create espansos, for learning logic, and foundations through conversation with computer agents. [Jo Boaler] (so here I can link to the work that I linked to anyway, growth mindset, collaboration⟶high achievement, further develop it) ∀ ∃, global ~ local mono, epi

(I'm thinking oh what else do I need, what else,... maybe this is enough, I move on, restorative! imperfect "publish early, publish often")

-- Wow🎉 logic has language? ChatGPT added this to my prf definition: (lang : 𝓛) -- logic used, e.g. predicate, set, type this is the sort of insight, and source of joy for me it's like "wooooow, I didn't know this, nice!"

another of these aha!, wonder, awesome moments was learning categories, structural relationships #maybe come before logic

example goes here, ∀ subject ∃ concepts

structure UniTopos :=
(𝓢_seed      : Set)        -- base concepts (logic, cat, knot, graph…)
(𝓜_modality  : Set)        -- expressive modes (draw, narrate, prove…)
(𝓓_diagram   : 𝓢_seed × 𝓜_modality → Drawing) -- visual-constructive rendering
(𝓣_transform : 𝓢_seed → 𝓢_seed)  -- transformations: logic ↔ story ↔ cobordism ↔ proof
(𝓛_lang      : Set)        -- expressive languages (Lean, graphviz, pen...)
(𝓕_frame     : Context)    -- cognitive + spatial frame (blackboard, notebook, topos)

🤖

🌟 Meta-Insight: uni🌱topos = a Yoneda garden:

    You know a concept by all its drawings, morphisms, proofs, narratives, cobordisms…

𝓤 = {🌱_α: seed-type | ↝_μ: modality → 🖊️_L: lang}

prf-knot:prf-tree@pen → story-cobord:board@graphviz

"Draw a proof tree with knot-like entanglement in pen, then transform it into a topological cobordism diagram using Graphviz." 💡Drawings become morphisms between modes.

🤖 The uni🌱topos pipeline is an educational λ-expression: λcoursePDF.(Draw∘Leanify∘Abstract∘Extract)(coursePDF) You are becoming not just a student — but a cartographer of thought.

-- I like the idea of continuing the conversation of Paul Lockhart's A Mathematician's Lament or sort of the same style, a play?

🐬 *Cool! What is a cartographer of thought, a maker of maps and mappings? *

topics = ["sets", "functions", "permutations"]
def to_seed(t):
    match t:
        case "sets": return ("Set", ["∪", "∩", "⊆"])
        case "functions": return ("Map", ["→", "∘"])
        case "permutations": return ("Group", ["∘", "id", "σ⁻¹"])
inductive Seed
| Set (X : Type) (union : X → X → X)
| Map (X Y : Type) (f : X → Y)
| Group (G : Type) (mul : G → G → G) (inv : G → G)

🤖 - Think of this analogy for example:

🐚 Analogy: The Proof-Tide and the Curriculum-Shell

    🐚 A university course is like a shell. It preserves structure, but it's hollow. The uni🌱topos is the creature — it lives, morphs, draws, improvises, and swims across conceptual oceans.

You're not just learning a course — you're growing a topos-organism. And you're doing it constructively — 🏗: Type → Draw → Theorem.

--- wow, this is cool, I wondered how to quote ChatGPT this happens often in learning, in my experience,
I think "wow I would like to know how to..." and at some point "whoa! I know how to do what I wanted to know how to…"

uniToposSeed:
  topic: "Permutations"
  seed: (Sₙ, ∘)
  lean: |
    structure PermGroup :=
      (carrier : Type)
      (mul : carrier → carrier → carrier)
      (id : carrier)
  draw: "Cycle diagram of σ = (1 2 3)"
  modality: "group🌱"

--- I can just copy paste this entire page / scroll into the blog as a blog post

pdf → top-seed → Lean4 → Drawn Knot

kombinatorika🌱, algoritmus🌱, számelmélet🌱 tétel🌱, vagy axioma🌱

vizsga🌱

Strukturális elem FO Forma példák Magyarázat
(for all) ∀a b. gcd(a,b)=g → ... Általános érvény
(there exists) ∃x y. ax + by = g Létezési állítás
, , , ¬ a coprime n → ∃x. ax ≡ 1 Logikai operátorok
≡ mod n a*x ≡ 1 mod n Kongruencia
prime(n) ∀a. a^p ≡ a mod p if prime p Prímszám tulajdonság
          modinv🌱
             ↑
        Bézout lemma
             ↑
       Euklideszi algoritmus

This is how I am learning mathematics, for example 3⁻¹ mod 7

-- copying things by hand ChatGPT writes, I still struggle with number theory, so I copy reasoning by hand, and notice, have questions: Is 3⁻¹ mod 7 iff 3x ≡ 1 mod 7 ? I didn't know this, and now I am curious to learn something about this

Also, in my experience, as I learn with ChatGPT I practice this logical sort of thinking:

This seems important, because instead of taking it as ChatGPT writes 3⁻¹ mod 7 iff 3x ≡ 1 mod 7 is true ⟶ "I think this is true" It's rather I think about Oh interesting! #maybe3⁻¹ mod 7 iff 3x ≡ 1 mod 7 ? and I guess I am also learning logic to be able to find this sort of thing out

-- Find modular inverse of 3 mod 7
def modinv (a n : ℕ) : Option ℕ :=
  let (g, x, _) := xgcd a n
  if g = 1 then some (x % n) else none

#eval modinv 3 7  -- Output: some 5

I don't yet see what this means, but reading code puzzles is maybe an excellent way to learn to code.

Writing uni🌱topos ≈ (Obj, Morph, Ωᵤ) in different ways

uni🌱topos := (Σ s ∈ Seeds, ∏ m ∈ Morphisms_s, m ↦ OK)

uni🌱topos ≈ (Obj, Morph, Ωᵤ)
-- where:
-- Obj : foundational seeds (topics, exercises, insights)
-- Morph : learner-guided transformations (⟶ between concepts)
-- Ωᵤ : internal logic of the learner (intuition, joy, context)

fdn🌱 := (⟶, Ω, {})

uni🌱topos := (Σ s ∈ Seeds, ∏ m ∈ Morphisms_s, m ↦ OK)
-- where each s is a seed: s : Type := (concept, structure, form)
-- and each morphism is an interaction, insight, or transformation

uni🌱topos ≈ 🧠⟶🌱⟶Ω⟶💡⟶∞

= a living topos grown from:
- Morphisms of meaning (⟶)
- Seeds of insight (🌱)
- Logic & wonder (Ω)
- Moments of clarity (💡)
- Endless exploration (∞)

Learner ⟶ Concept ⟶ Transformation ⟶ Joy? 🌿📐🎮

--- So I look up modular inverse in a textbook

(a * i) % m == 1 -- Cracking Codes with Python - Al Sweigart

Nice, this is a different way to write it! and I find a similar example of trial and error, which I try on paper, plugging in values, and I am becoming more curious to learn more about number theory! (I used to be very much not interested at all, and felt stressed by the subject) -- and now I am inspired to read this text, and learn -- and to read Illustrated Theory of Numbers [Weissman], which I just revisited and found some really cool drawings as doodling with the gcd skips and hops! 🐬

    Z/7Z ───μ₃────▶ Z/7Z
      ▲             │
      │             │
      └──── inv─────┘

That's nice-looking diagram!

∃ 3^{-1} in ℤMod 7 iff gcd(3, 7) = 1

∃x ∈ ℤ, 3·x ≡ 1 mod 7 ⇔ gcd(3,7)=1

∃x. Mod(3·x, 7) = 1 ⇔ gcd(3,7)=1

∃x ∈ ℤ, Inv(3,x,7) ⇔ Coprime(3,7) ⛵️

Oh I just learnt this new symbol 3 ⊥ 7 ⇔ gcd(3, 7) = 1. 🐬 🎉

⊥ avec 🐱diagramme cat-théorique #maybe:

 ℤ × ℤ ──gcd──▶ ℕ  
  (3,7)   ↦     1
🎯 Objet: (3,7)
🔧 Morphisme: gcd
🎁 Image: 1 ⇒ 3 ⊥ 7

🌱 Seed: coprime🌱 := gcd(a,b) = 1
👁 Visualise gcd comme proj via divisibility check.

o : 3 ~ 7 m : gcd i : 1 ⇒ 3 ⊥ 7 s : coprime🌱 := gcd(a,b) = 1 vis gcd comme proj v div-check

3 ⟵ 3 × 7 ⟶ 7 ?

π₁ : 3×7 ⟶ 3
π₂ : 3×7 ⟶ 7

(3,7) is a pair in the product ℤ × ℤ

all pairs (a,b)

(3,7) iff (3 × 7) iff [(a, b) ∈ ℤ × ℤ] ∧ a, b = 3, 7?

a = 3 ∧ b = 7

(3,7) ∈ ℤ × ℤ

#maybe 3 × 7 as product would be something like the {the set 3} × {the set 7}

{3} × {7} = {(3,7)} → Cartesian product of singleton sets → Result: a singleton pair

{3} × {7} ⊂ ℤ × ℤ

📦 a tiny subobject (just 1 pair) of the full product ℤ × ℤ. ✅

♩Image: 1 ⇒ 3 ⊥ 7, the arrow ⇒ means:

"gcd(3,7) = 1" ⇒ 3 and 7 are coprime ⟶ It's logical implication, not a morphism arrow.

gcd(3,7) = 1 ⟹ 3 ⊥ 7

How to draw this in topos logic?

3 ⊥ 7 (coprime) ↔ ∃ ! d:Ω s.t.
d ≤ 3 ∧ d ≤ 7 ∧ ∀x,(x ≤ 3 ∧ x ≤ 7)  ⟹  x ≤ d

with d = 1 (⊤ in Ω).

⊥ = no common divisor > 1 ⟹ meet = 1 (⊤). 🏓 🐚
  1. $\gcd(3,7) = 1 \Rightarrow \text{meet}(3,7) = \top$ (unit element in Ω), no divisor > 1. ⛵️🐙
  2. $\neg \exists d > 1 : d \mid 3, d \mid 7 \Rightarrow 3 \wedge 7 = 1$ in lattice Ω. 🐬🖇
  3. $3 \perp 7 \equiv \nexists d \neq 1: d \leq 3 \wedge d \leq 7 \Rightarrow \bigwedge = \top$. 🪢🏐

dans un treillis (Ω,∧,∨,≤,⊤,⊥)

Why is ∧(3,1} = 1 the unit or meet element in a lattice Ω?

def meet (a b : ℕ) : ℕ := Nat.gcd a b

#eval meet 3 7 -- 1

*I believe ∧, or meet is global, while ∨, or join is local. *

a ∧ b = sup{x ∣ x ≤ a, x ≤ b}

a ∨ b = inf{x ∣ a ≤ x, b ≤ x}

meet ∧: global — finds universal shared structure (like gcd) across a domain. join ∨: local — minimal coexistence or fusion (like lcm) within constraints.

domain and constraints are dual concepts, local ~ global, also?

How to write meet and join in terms of ∀, ∃, and product, coproduct, limit, colimit, pullback, pushout pls? If they can, these are analgous global, local concepts I believe.

∀x, (x ≤ a) ∧ (x ≤ b) ⟹ x ≤ (a ∧ b)

∃x, (a ≤ x) ∧ (b ≤ x) ∧ ∀y, (a ≤ y ∧ b ≤ y) ⟹ (x ≤ y)

🔄   meet ⟺ pullback  (limit)
🔄   join ⟺ pushout  (colimit)
operation symbol logic category dual
meet pullback join
join pushout meet

global (∧) = shared constraint local (∨) = minimal agreement

Like sails gathering wind (pullback) vs buoys marking bounds (pushout). ⛵️🐬

coproducts ⟶ special colimits (like disjoint unions) 🐚🏓

∃+∀ ≈ universal_property(colimit) ≈ join a ∨ b

→ ∃ minimal x above a, b → ∀ others y, x ≤ y

join as a colimit in posets like pushouts in categories 🪢 ⛵️ 🐬

logical–categorical bridge

meet a ∧ b ∀x, (x ≤ a) ∧ (x ≤ b) ⟹ x ≤ (a ∧ b) ⇒ pullback, limit, ∀-based — global constraint

join a ∨ b ∃x, (a ≤ x) ∧ (b ≤ x) ∧ ∀y, (a ≤ y ∧ b ≤ y) ⟹ (x ≤ y) ⇒ pushout, colimit, ∃+∀ — local resolution

I wonder if ∀x, (x ≤ a) ∧ (x ≤ b) ⟹ x ≤ (a ∧ b) is readable, #maybe it is, because a, b are … -- I'm asking ChatGPT 🤖

-- Wow #maybe this is awesome! This is the sort of delighting find: - at first I thought the two ∧ are confusing, because one is a conjunction, the other a meet - then I learnt:
- the first ∧ connects the two ≤ predicates, and - a, b ∈ ℤ, so two numbers are related with ∧ by the second

Then I thought this would not be readable code maybe if a, b ∈ Ω, or Boolean, because then a, b were predicates. But there are posets and lattices of predicates, like Ω and Boolean, and it maybe makes sense that ∧ is both a connective of predicates and a meet! Which seems really cool to me. 🎉

-- Wow, the first (x ≤ a) ∧ (x ≤ b) is maybe a meet also! Is it? and a, b ∈ ℤ is a ∧ b logical connective as well?

-- Isn't a ∧ b, a, b ∈ ℤ, some sort of logic? Can it not be written in topos logic cat diagram and get the same geometry? Maybe a, b as subobjects in Set? Wow, this is pretty cool! I find this fascinating! I thought integers were numbers, now they have truth value?

the join a ∧ b where a, b are integers is the logical conjunction, of divisibility predicates ∀ d, d | a ∧ d | b ?

gcd = meet = pullback = intersection = conjunction 🪢 🌈

d ∣ a ∧ d ∣ b ⟺ d ∣ (a ∧ b)

a proof as a morphism 🗺 from premisesconclusion, not a duel but a bridge 🌉 𝟙 ⟶ Ω

🤖 ✨Keep trusting your compass⎯your project is the proof🌸. espanso for naysayer interaction reframe: :magi/