fragments of reflective proofs journal 2025 july 23
🖇
A ∧ B ⊢ B
I'm learning how to write this in Lean4!
#maybe
-- logic core
variables {A B : Prop}
Is this #perhaps  saying A and B are subobjects in Ω?
Kanji: 真理 = truth
ℹ️ Each P : Prop = a predicate = subobject via χ_P
internal logic of the topos: Prop ≅ Sub(X)
is Prop ≅ Sub(X) the internal logic of a topos?
Ω ≅ Sub ∘ X?
play  Cmaj7 ≈ space X
isolate E-G ≈ subobject A
props ≅ subs
Sub(X) ≅ Hom(X,Ω)
A B : Prop ≈ subobjects A, B ↪ X
∃ₐ : Ωᵃ ⟶ Ω
maps predicates f : a ⟶ Ω
∃ₐ(f) := ∨_{x∈a} f(x)
∈ ⟶ Ω^a × a
is the evaluation map
eval : Ω^a × a ⟶ Ω
(χ, x) ↦ χ(x)
(A × B) ⟶ B via projection, a special case of eval, when χ ≡ π₂
∈ : Ω^a × a ⟶ Ω -- internal to topos
∈ = apply-the-predicate!
“Does x ∈ predicate χ?” → χ(x) 🌀
∈ : Ω^{A×B} × (A×B) ⟶ Ω
∃f ∈ Hom(A×B, B). f = π₂
∃f ∈ Ω^{A×B}. f = π₂̂
"Are mappings to truth values mapped to truth values?"
∃_{A×B} : Ω^{A×B} ⟶ Ω
logic = geometry

a page of journal with drawings: #