fragments of reflective proofs journal 2025 july 23
🖇
A ∧ B ⊢ B
I'm learning how to write this in Lean4!
#maybe
-- logic core
variables {A B : Prop}
Is this #perhaps saying A
and B
are subobjects in Ω
?
Kanji: 真理 = truth
ℹ️ Each P : Prop
= a predicate = subobject via χ_P
internal logic of the topos: Prop ≅ Sub(X)
is Prop ≅ Sub(X)
the internal logic of a topos?
Ω ≅ Sub ∘ X
?
play Cmaj7
≈ space X
isolate E-G
≈ subobject A
props ≅ subs
Sub(X) ≅ Hom(X,Ω)
A B : Prop ≈ subobjects A, B ↪ X
∃ₐ : Ωᵃ ⟶ Ω
maps predicates f : a ⟶ Ω
∃ₐ(f) := ∨_{x∈a} f(x)
∈ ⟶ Ω^a × a
is the evaluation map
eval : Ω^a × a ⟶ Ω
(χ, x) ↦ χ(x)
(A × B) ⟶ B
via projection, a special case of eval, when χ ≡ π₂
∈ : Ω^a × a ⟶ Ω
-- internal to topos
∈
= apply-the-predicate!
“Does x ∈ predicate χ
?” → χ(x)
🌀
∈ : Ω^{A×B} × (A×B) ⟶ Ω
∃f ∈ Hom(A×B, B). f = π₂
∃f ∈ Ω^{A×B}. f = π₂̂
"Are mappings to truth values mapped to truth values?"
∃_{A×B} : Ω^{A×B} ⟶ Ω
logic = geometry
a page of journal with drawings: #
