approximation 4
learning/constructing
A ∧ B ⊢ A
I'm surprised, happy, because this is #maybe projection in logic, and categories:
π₁ : A × B ⟶ A
example (A B : Prop) : A ∧ B → A := And.left
π₁ : C-E-G ⟶ C-E
?
dual of A ∧ B ⊢ A
#unsure
dual of ∃f : Γ ⟶ φ
#maybe dual(∃)
≈ ∀ 🐬
¬∃f : Γ ⟶ φ
= ∀ f
A ∧ B ⊣ A
?
A ∧ B ⟵ A : f∀
A ⊢ A × B
┌─────┐ ┌─────┐
│ A │ ⊢ │ AB │
└─────┘ └─────┘
π₁: A ⟶ A × B
a journal of proofs! 😌
-- prove the right projection A ∧ B ⊢ B in Lean4
this seems difficult
maybe #eval A B : Prop : A × B \r B by And.right(A × B)
Alright, it goes something like this, which I don't yet understand:
example (A B : Prop) : A ∧ B → B := And.right
Is ∃ f : A ∧ B ⟶ Ω
analogous to saying ∃ f : A ∧ B ⟶
⊤ : truth`
def right_proj(pair):
A, B = pair
return B
def right_proj {A B : Prop} (h : A ∧ B) : B := And.right h
右 (みぎ) = right
🐚
-- dual of π₁ : A × B ⟶ A is
-- η : A ⟶ A ∨ B
p : A ∧ B
⇒ proj₂(p) : B
Δ : A ⟶ A × A
C-E-G-B ⟶ G-B
example (A B : Prop) (h : A ∧ B) : B := h.right
A ⊣ A ∧ B ⊢ B
π₁ : A ⟵ A × B ⟶ B : π₂
∃ f : 1 ⟶ A ∧ B ⟶ A ⟶ Ω
only if the proof holds, or this can be false also? Perhaps it requires the (right adjoint?) t : 1⟶ Ω
to make it link to top.
stepping into internal language of toposes 🌀
logic ~ category theory ~ internal language of toposes
Does 1 ⟶ A ∧ B
means already, that ∃ ∧ A B
?
∃ (a : A), ∃ (b : B)
∃ (p : A ∧ B)
f : 1 ⟶ A ∧ B ≡ ∃ p : A ∧ B
1 ⟶ A implies ∃ p : A,
1 ⟶ A ∧ B ⇒ (1 ⟶ A) × (1 ⟶ B) ∵
A ∧ B ≡ (1 ⟶ A ⟵ A × B ⟶ B ⟵ 1)
A or B ⟶ Ω says ∃ (1 ⟶ A ⟶ A + B ⟵ B ⟵ 1) ⟶ Ω
1 ⟶ A ⟹ ∃ p : A
I don't yet understand this: 1 ⟶ A
means exists a proof of A
, or it means the arrow A
, and it's different from ∃A
?
m
A ⟶ X
↓ ↓Χ_A
1 ⟶ Ω
t
1 = {★}
{★} ⟶ A ≡ A ≠ ø
∃A
is #maybe not valid, ∃ x : A, P x
, or ∃ p : A
f : 1 ⟶ A ≡ ∃ f : 1 ⟶ A
? #unsure
Form | Meaning |
---|---|
1 ⟶ A |
A has a global element |
∃ p : A |
A is inhabited |
1 ⟶ Ω |
A truth value (⊤ or ⊥ ) |
A ↪ X |
A is a subobject of X |
χ_A : X ⟶ Ω |
Predicate classifying A ⊆ X |
f : 1 ⟶ A ⟹ ∃ f : 1 ⟶ A
∃ f : 1 ⟶ A ⇏ f : 1 ⟶ A
1 ⟶ A ⇔ A is inhabited ⇔ ∃ a : A
but
f : 1 ⟶ A not iff A is inhabited?
example (A : Prop) (f : 1 ⟶ A) : ∃ (g : 1 ⟶ A), True := ⟨f, trivial⟩
f : 1 ⟶ A ≡ “let f be a morphism from 1 to A”
f : 1 ⟶ A -- syntax: a name and a type
∃ f : 1 ⟶ A -- logical statement: such a morphism exists
a
1 ⟶ A ← Proof A is inhabited
f : 1 ⟶ A` is not eqm
f
1---->A
eqm
a
1---->A
?
f : 1 ⟶ A ↔ f(★) = a₁ ∈ A
a : 1 ⟶ A ↔ a(★) = a₂ ∈ A
Has ∃ it's own diagram, or … ? 🦊
1 ⟶ A ≡ ∃ p : A (in inner logic of topos)
#unsure
from Topoi, [Goldblatt]:

#maybe ∃_f(g) : f ∘ g (c) ⟶ b
seems analogous to t : 1 ⟶ Ω
∃_f : Sub(a) ⟶ Sub(b)
What is ∃ ⊣ f⁻¹
? 🧐
∃_f(g)
as compression of logical content #feasible 🪶
a related paper page of journal #
