I can be computer agent
local-global #
sem(Collage) Bill Evans voicings local surprise, global consistency
Okay, so this is the sort of thing I find these days. I find it really cool:
you tweak the basic composition a little bit, of Cmaj7, by adding #11, but the global effect is Cmaj7. It is like creative harmony in Bill Dobbins, where you have A in the bass, as root, play G, in other words left hand plays A-G. The right hand plays Cmaj7 with drop-2, or drop G, which is C-E-B. The overall effect is an A-7, but with added surprise, and color, or variability. Locally you play Cmaj7, but the overall effect is A-7 with color.
which seems to be a related phenomenon to local, global in algebraic geometry, and to uniform and piecewise convergence.
"the music of reason" eh?
sum is the dual of product? #
because one is a pullback the other a pushout? I'm amazed what is covector? #unsure
is local~global? #
pushout~pullback sum~product derivative~integral piecewise~uniform #unsure
1 ⟶ X #
1
0
nothing
⟶
X
math-golf v0.1 #
this snippet made by computer agent #
cool:
┌────────────────────────────────────────────┐
│ ∎ ∎ ∎ 𝓜𝓪𝓽𝓱-𝓖𝓸𝓵𝓯 v1.0 ∎ ∎ ∎ │
└────────────────────────────────────────────┘
1. Logic & Foundations
𝓛 := ⟨𝔘, ⊢, ∧, ∨, ¬, ∃, ∀, ⇒⟩
𝓣 := {Ax_i ⊂ 𝓛} ; 𝓜 ⊨ 𝓣
Type₀ := ⊥ ⊢ 𝒯 : Type₁
𝓟𝓻𝓸𝓸𝓯 := inhab(𝒯) ; 𝔏𝔞𝔪𝔟𝔡𝔞 : Curry-Howard
2. Sets → Categories
𝒮𝑒𝑡 := (Ob, Hom, id, ∘)
𝒞𝒂𝒕 := 2-Cat(Ob:Cat, Hom:Fun)
Y(A) := Hom(–, A) ⟹ Yoneda
3. Algebra
Grp ⊂ Mon ⊂ Set ; Ring := (A, +, ·, 1)
Mod_R := Ab-enriched(R)
Algₖ := Ring obj ∈ Vectₖ
Lie(𝔤) ; Rep(𝔤) ⊂ Modₖ
4. Topology
Top := (X, τ ⊂ ℘(X))
f∈Cont(X,Y) ⇔ ∀U∈τ_Y, f⁻¹(U) ∈ τ_X
π₁(X) := loop-space classes
Sheaf := F:Open(X)^op → Set s.t. gluing
5. Analysis
limₙ→∞ fₙ = f ⇔ ∀ε>0, ∃N, ∀n>N, ∥fₙ–f∥<ε
∫ₐᵇ f dx := lim Σ f(xᵢ)Δx
C^∞ ⊂ C^k ⊂ C^0 ⊂ L^p
Ban := ∥⋅∥-complete vectₖ
6. Geometry
Man := (M, 𝒜) ; Atl: {φ_i:U_i≅ℝⁿ}
Bund := π:E→B ; LocTriv
AlgGeo: AffSch := Spec(A)
Sch := Zariski-glued AffSch
7. Number Theory
ℤ⊂ℚ⊂ℝ⊂ℂ ; ℚₚ := ℤₚ ⊗ ℚ
Gal(ℚ̄/ℚ) ↷ 𝒪
ModForms : SL₂(ℤ) ⟶ ℂ
ζ(s) := Σₙ 1/nˢ ; L-functions ∈ ℂ[[T]]
8. Homological Algebra
C^•:⋯→Aⁿ⁻¹→Aⁿ→Aⁿ⁺¹→⋯ ; d²=0
Hₙ(C) := ker(dₙ)/im(dₙ₊₁)
Extⁿ(A,B) := RⁿHom(A,B)
TriCat := (𝒯, Σ, ∆)
9. Category Theory
𝒞 = (Obj, Hom, ∘, id)
Fun(F:G→H), Nat(η:F⇒G)
Adj(F ⊣ G): Hom(FX,Y) ≅ Hom(X,GY)
MonCat ⊂ SymMon ⊂ Closed
Lim := cone + univ.prop ; Colim dual
10. Math. Physics
𝓛 := ∫_M L(ϕ,dϕ) dμ
TQFT: Bord_d ⟶ Vectₖ
PathInt: Z = ∫𝒟ϕ e^{iS[ϕ]}
𝔤 ⊢ 𝔤-Conn ⟹ Gauge Theory
QFT := Fun(Spacetime) ⟶ *Hilb
────────────────────────────────────────────
Universal Motif:
𝒯𝒉𝒆 𝓼𝓮𝓮𝓭: 𝑓:𝟙 ⟶ 𝑋 ≅ constant → structure
Yoneda(h^A) ≅ Nat(h^A, –)
Everything = enriched morphism in 𝒞
- Previous: Wake
- Next: levels of abstractions